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Tetrahydrofuran-P~ands, Stereoselective Synthesis 
of tra~s=2,5=oIigo~Tetrahydrofura~s 

UlrichKoerF,MaahiasSteinandKlausI3amts 

Abstract: Ensntiomerically pure THPpodmdr 1 were cyntbesized along a lhter~ route 
Starting from lactone 3. A high degree of rtemocbemicd control war achieved by cheletion 
controlled addition of the f~c~~i~d Grignsrd resgent 7 to a-slkoxy-aldebydes of type 6. 

Oligo-2,5-linked ~~~ (oligo-THFs) such as 1 nxeivc considerable interest as THF- 

podan&r’IbysharaapolyahtrbsdEboaesviththcTHp-podandsoftypt2~~bys~~.~~~tto 

the THP pcdands 2, which possess 2,6&s-THP units, THF-podands 1 am assembled out of 2,5-trans-THF 

units. Roth podands have in cqnmon the potential to differentiate between enantiomuic hosts. 

While THP-podands 2 were especially designed to have only one preferred conformation2, oligo- 

THFs 1 should be more conformationally flexible, thus allowing to b@d host molecules in an induced fit 

~Themminal~functionslityinlpovidesthepossibility#~~unitsintolargerstructuns 

~bkf~i~~g~~ 

Furtherman, the oligo-THF moiety tqresents a sauctuml key feature of the acetogenins3, a class of 

natural products with antineoplastic proper&s. Reported herein is a new stereoseleetive approach to 

cnantiomerkally p oligo-THFQ such as 1, which differs from previous synthetic wo& in the fkld of 

stuWs&ctive THF synthesis. 
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Schemtl~ourtioearapproecfitoo~~~s~aas~veelabaationofaTHPrinOtoa 

pmcxisting chain of THP units. Starting from enantiomeric8lly pure lactonc 35 the nitriks 4 and 5 were 

obtaineda as a 5 : 2 mixture of epimers and easily separated by c~a~~phy. The trans t&tile 4 was 

converted into itx corresponding methyl ester. Subocqacnt DIBAH-reduction prwidcd tmno-ddchydc 6. 

Reacti~afdwiththG~~77~th?pnrerosofCuOaffadsdalcobolgwithastgw#fnctivity 

of 92:s. Conversion of the aoeumi& fknction into an epoxide of proper configuration and intramolecular 

epoxidc opening gave THFditncr monoakohol9. Swem oxidation and another round of the stcreo&ctive 

Mg/Cu(I) reaction with 7 folhiwod by opoxidc f~~~~~g provided aocoss to the THF-trimer 

monoalcohol 11. 

Scheme 1 

4:R’=H,R’=CNA 
5:R’=CN,R2=H 

6 

11 

The preferred formation of products 8 and 10 was expected according to Cram’s cyclic 

model of chelation control 8. The relative configuration of the newly formed stereocenter in 8 

wss secured by correlation with the lactone 13. For this purpose an independent synthesis of 

compound 9 was carried out as shown in scheme 2. Reaction of acetate 12 with 2- 

trimethylsiloxyfuran~~F3.OEt2 proccadcd smoothly fo give a mixture of 13 @no-trans. 31%). 

14 (erythro-trans. 10%) snd 15 (thrco/erythro-cis, 59%). The compounds 13.14 and 15 were 

separated by silica gel chromatography. The assignment of the relative configuration of 13 was 

untqttivocally established by X-ray crystallographic analysis9. 
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Scheme 2 

17 
P - TSDPS 

9 

Th& hM63Iiti~ k%SdWlJ d &U? _j%?W+X&M #&W&d& s&W ..%Q%~k~k#~ &3Wi?? sd 8% 

addition of Z-trialkylsiloxyfuran to cyclic N-acyliminium ionslo. The lactone 13 was 

subsequently transformed into 9, thus proving the stereochemical assignments made in 
scheme 1. Finally, compounds 9 and 11 were TBD~-p~~~ to afford the C2-symmetric THF- 

dimer 18 and THF-trimer 19 twpectiucly (sctuxt~e 3). 

Scheme 3 

9 
18pIT!SDF% 

11 
UP=Tl%Dpg 

in summary, this work establishes a linear route to trans-2.5-o&o-TIiFs, a potential new 

type of podands. Extension of the synthetic strategy presented here to larger ollgo-THP 

containing atructurcs aa well as ion binding and traaaport studies are currently underway and 

will be the topics of subsequent reports from this laboratory. 
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